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OUTLINE

• What is density-functional theory? (Part I)
• What does it take to perform these 

calculations? (Part II)
• Why is it relevant for science and 

technology? (Part III)
• What can it do? and cannot do? (Part III)

(to keep in touch, info in the Learn section of the 
Materials Cloud website, and https://bit.ly/3eqighg)
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• Kohn-Sham mapping into non-interacting electrons 
allows to define a non-interacting kinetic energy Ts

• Unknown functional: known Ts + known Hartree + 
unknown Exc
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• Euler-Lagrange equations (i.e. Kohn-Sham)

• LDA for the last unknown piece

The Kohn-Sham equations
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XC hole in a model insulator

Courtesy of RJ 
Needs 2001
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XC hole in a model insulator

Needs 2001
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Spherical average saves LDA!

W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001) 
A. Puzder, M. Y. Chou, and R. Q. Hood, Phys. Rev. A 64, 022501 (2001)
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LDA across materials space

C. J. Pickard 2002
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Well, not always…
VOLUME 76, NUMBER 4 P HY S I CA L REV I EW LE T T ER S 22 JANUARY 1996

Generalized Gradient Theory for Silica Phase Transitions

D.R. Hamann
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

(Received 16 October 1995)
Density functional theory based on the generalized gradient approximation to the exchange and

correlation energy is shown to correct a qualitative error of the local density approximation in describing
a high-pressure phase transition of SiO2. Advantages of an adaptive curvilinear coordinate method for
such generalized gradient calculations are discussed.

PACS numbers: 71.15.Mb, 61.50.Lt, 62.50.+p, 91.60.Hg

Generalized gradient approximations (GGA’s) to den-
sity functional theory (DFT) [1] were introduced 12 years
ago [2], but have not made a major impact on ab initio
calculations of materials properties. Since the pioneering
calculations of Yin and Cohen on the high-pressure phase
transitions of silicon [3], the local density approximation
(LDA) to DFT [1] has been repeatedly shown to give ac-
curate results for structural energetics. The best that can
be said for the GGA, judging from recent well-converged
calculations [4], is that its predictions are comparable in
accuracy to those of LDA. This is a small reward for
the considerable increase in computational resources typi-
cally required to carry out GGA calculations for solids. In
contrast, recent applications of GGA’s to reactions of iso-
lated molecules have demonstrated marked improvement
compared to the LDA or the Hartree-Fock approximation
(HFA) [5,6].
Two recent studies of various polymorphs of SiO2

report LDA energies for the high-pressure stishovite phase
which are in qualitative disagreement with experiment.
The energy difference per SiO2 between stishovite and
the stable a-quartz structure is calculated to be 0.086 eV
by Keskar and Chelikowsky [7], and 0.07 eV by Liu
et al. [8], while the experimental difference is 0.51–
0.54 eV [9,10]. In contrast, a recent periodic Hartree-
Fock calculation yielded a difference of 0.57 eV, in
substantial agreement with experiment [11].
Quartz, along with silica glass and various low-

pressure crystalline polymorphs, consists of a network
of corner-sharing SiO4 tetrahedra. Stishovite has the
tetragonal rutile structure, in which the Si is octahedrally
coordinated, and the O effectively threefold coordinated.
The density of stishovite, which is metastable and exists
at zero pressure, is 62% greater than that of quartz. The
apparent inability of the LDA to energetically distin-
guish these radically different atomic configurations calls
into question its suitability for studying any process in
silica or silicates in which one of the constituent atoms
undergoes a coordination change. This would include
studies of the formation of defect, interface, and amor-
phous structures of silica and many related materials.
Such materials and processes are of great importance in
both technology and geophysics, and a computationally

efficient means to simulate their properties, applicable
to large supercells, is highly desirable.
An adequate comparison of the LDA and GGA for the

quartz-stishovite problem is demanding, due to the highly
localized nature of the oxygen valence orbitals. To avoid
systematic error to the greatest possible degree, we car-
ried out independent LDA calculations for both materials
using fully equivalent computational methods and pseu-
dopotentials to those used for our GGA calculations. We
essentially confirmed the published LDA results [7,8], and
found that the GGA employed gives excellent agreement
with experiment for the structural energy difference and
coexistence pressure.
While a variety of functional forms have been proposed

for the GGA, many have empirically adjusted parameters.
We preferred to employ the recent parameter-free form
of the GGA given by Perdew and Wang (PW91) [5,12],
which is based strictly on sum rules, analytically known
limits, and the local dependence calculated by Ceperley
and Alder by quantum Monte Carlo techniques [13].
Other forms were not tested.
Our pseudopotential results were obtained with a wave

function basis of plane waves in adaptive curvilinear co-
ordinates (ACC’s). This method, recently introduced by
Gygi [14], yields a large enhancement of the effective
plane-wave kinetic energy cutoff, and allows the highly
localized O valence electrons to be accurately treated with
a much smaller number of plane waves than in a con-
ventional calculation. In our application of this method,
unbiased parameters of the coordinate transformation are
fully relaxed simultaneously with the wave function ex-
pansion coefficients and atomic positions to minimize the
energy [15].
The GGA energy density is a smoothly varying func-

tion of the electron charge density r and of j=rjyr, and
presents no computational problems. The corresponding
exchange-correlation potential, however, involves the gra-
dient of a function with cusps, and presents extreme con-
vergence difficulties in a plane-wave calculation [16]. We
have dealt with this problem by an unexpected synergy
between ACC’s and the GGA. The derivation of the
exchange-correlation potential, which is formally a func-
tional derivative of the DFT energy [1], can be rearranged
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FIG. 3. Energy vs volume for GGA and LDA showing
calculated points and fits by the Murnaghan equation of
state [22].

valence electron energies for the LDA and GGA are
aligned on an absolute basis, with GGA a-quartz taken
as zero [23]. The quartz-stishovite energy difference
within the LDA is found to be 0.02 eV per SiO2, slightly
smaller than the values given in Refs. [7] and [8]. The
GGA result is 0.57 eV, in surprisingly good agreement
with the experimental value of 0.51–0.54 eV [9,10], and
identical to the HFA result [11] (which must certainly
be accidental). A common-tangent construction gives a
coexistence pressure of 7.2 GPa, in excellent agreement
with the value of 7.46 inferred from experiment [10].
The calculated structural and elastic properties of a-

quartz and stishovite are compared to experiment in Ta-
bles I and II. Errors in the lattice parameters and bond
lengths are in the (1–2)% range for both materials, and for
both LDA and GGA. This is typical for LDA, and the pre-
viously observed tendency of GGA to give slightly larger
interatomic distances [4,5] is also observed in the present
calculations. The calculated bulk moduli are in error by
8% to 18% for the LDA, and 16% and 26% for the GGA.
These are also within the typical range, and for stishovite,
the GGA gives a significantly smaller B0, as typically
observed [4]. Anomalously, for a-quartz, where compres-
sion is principally accommodated by decreasing the Si-O-
Si bond angle rather than shortening Si-O bonds, the GGA
B0 is slightly larger than the LDA value. Previous pseu-
dopotential LDA results for B0 bracket the present result
for stishovite, while the corresponding a-quartz results are
smaller and closer to experiment [7,8]. This discrepancy
may be related to the fits employed. All-electron LDA
results, available for stishovite, find B0 larger than experi-
ment [24], and close to the HFA value [11], which is in-
cluded on Table II along with HFA structural results.
The LDA quartz-stishovite energy differences found in

Refs. [7] and [8], as well as the present LDA results, are
called into question by a new calculation based on “ex-

TABLE I. Structural and elastic properties of a-quartz.

Parameter Experiment GGA LDA

a sÅd 4.92a 4.97 4.84
c sÅd 5.41a 5.52 5.41

Si-O(1) (Å) 1.605a 1.622 1.611
Si-O(2) (Å) 1.614a 1.625 1.617
Si-O-Si (deg) 143.7 a 145.5 140.2

B0 (GPa) 38a 48 45
B0

0 6a 3.0 4.9
aReference [25].

tended norm and hardness conserving” pseudopotentials
[26]. The new work finds a quartz-stishovite difference
of 0.3 eV, in qualitative agreement with experiment [27].
To further test the LDA difference in as independent a
manner as possible, we have carried out additional cal-
culations using a well-tested general-potential linear aug-
mented plane wave (LAPW) approach [28]. Since these
are all-electron calculations, they avoid all issues con-
nected with pseudopotential construction and implementa-
tion. The completely independent LAPW basis set serves
as a check on the ACC basis and its implementation.
Since the short Si-O bond length in a-quartz requires
small muffin-tin radii, LAPW convergence was carefully
tested by performing several calculations. An O muffin-
tin radius of 1.3aB was used with a 25 Ry plane wave
cutoff, and 1.1aB with 30 and 35 Ry, with identical radii
for both polymorphs in each pair of calculations. The
resulting quartz-stishovite energy differences were 20.04
to 20.06 eV per SiO2 (stishovite lower in energy than
quartz). It is clear that the present ACC and LAPW re-
sults are consistent with each other, with the results of
Refs. [7] and [8], and with an LDA energy difference of
approximately zero on the scale of 0.5 eV set by experi-
ment [9,10,29].
Silica has many polymorphs consisting of corner-

sharing tetrahedral networks, and their energies are close
to that of quartz despite substantial volume differences.
To verify that the GGA result for the quartz-stishovite
transition truly reflects the coordination change, and
not a spurious volume effect, we have calculated the

TABLE II. Structural and elastic properties of stishovite.

Parameter Experiment GGA LDA HFA

a sÅd 4.18a 4.29 4.20 4.15b
c sÅd 2.67a 2.68 2.65 2.69b

Si-O(1) (Å) 1.76a 1.77 1.76 1.76b
Si-O(2) (Å) 1.81a 1.87 1.82 1.80b
B0 (GPa) 313c,a 260 286 328b

B0
0 2.8–6c,a 3.0 4.6 4.0b

aReference [30].
bReference [11].
cReference [31].
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Summary on xc

• LDA (local density approximation)
• GGA (generalized gradient approximation): 

BP88, PW91, PBEsol, BLYP, …
• WDA (weighted density approximation –

good, not much used)
• Meta-GGA: Laplacian (TPSS, SCAN)
• Hybrids (B3LYP, PBE0PBE, HSE): part of 

Fock exchange
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Back to the one-electron problem

• How do we solve the set of one-particle 
differential equations that come from 
Hartree, Hartree-Fock, or density-
functional theory ?

   
− 1

2
∇2 + V (


RI −
r )+ Mean Field Term

I∑⎡

⎣
⎢

⎤

⎦
⎥ϕ(r ) = εϕ(r )
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Expansion in a basis

   
ψ (!r ) = cnϕn

n=1,k
∑ !r( )
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Differential eqs. as a linear algebra problem
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Differential eqs. as a linear algebra problem
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Differential eqs. as a linear algebra problem



Variational principle as a non-linear minimization
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What choice for a basis ?

• For molecules: often atomic orbitals, or 
localized functions as Gaussians

• For solids, periodic functions such as sines 
and cosines (plane waves)
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Bravais lattices

• Infinite array of points with an arrangement and orientation that 
appears exactly the same regardless of the point from which the 
array is viewed.

• 14 Bravais lattices exist in 3 dimensions (1848)


R = la1 +m

a2 + n
a3     l,m and n integers

a1, 
a2  and 

a3  primitive lattice vectors
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Bravais lattices14
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Reciprocal lattice (I)

• Let’s start with a Bravais lattice, defined in 
terms of its primitive lattice vectors…


R = la1 +m

a2 + n
a3

l,m,n integer numbers

R = l,m,n( )1a

!

2a
!3a

!
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Reciprocal lattice (II)

• …and then let’s take a plane wave

Ψ(r ) = Aexp[i(

G ⋅ r )]
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Reciprocal lattice (III)

• What are the wavevectors for which our 
plane wave has the same amplitude at all 
lattice points ?

cellunit  primitive
  thedefine  and  , 321 aaa !!!

exp[i(

G ⋅ r )] = exp[i(


G ⋅ (r +


R))]

exp[i(

G ⋅

R)] =1

exp[i(

G ⋅ (la1 +m

a2 + n
a3))] =1
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Bravais lattices in INPUT_PW
ibrav is the structure index:
ibrav        structure              celldm(2)-celldm(6)

1          cubic P (sc)                 not used
--------------------------------
2          cubic F (fcc)                not used   
6          tetragonal P (st)        celldm(3)=c/a
--------------------------------
14        triclinic P                    celldm(2)= b/a,

celldm(3)= c/a,
celldm(4)= cos(bc),
celldm(5)= cos(ac),
celldm(6)= cos(ab)

--------------------------------
fcc bravais lattice.
a1=(a/2)(-1,0,1), a2=(a/2)(0,1,1), a3=(a/2)(-1,1,0).
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Bloch theorem

• n, k are the quantum numbers (band index n and 
crystal  momentum k)

• u is periodic (same periodicity as Hamiltonian)
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Bloch wavefunction
Enk

k

0 eV

-10 eV

ψnk (x)

Ingredient: 
Atomic 

wavefunction

Bands and Bloch theorem
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periodic u is expanded in planewaves, labeled 
according to the reciprocal lattice vectors

un k (
r ) = cn k


G exp(i


G ⋅


G
∑ r )

ψ n

k (
r ) =un k (

r )exp i

k ⋅ r( )

Plane wave expansion
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The plane waves basis set

1. Systematic improvement of completeness/resolution
2. Huge number of basis elements – only possible because 

of pseudopotentials
3. Allows for easy evaluation of gradients and Laplacian
4. Kinetic energy in reciprocal space, potential in real space
5. Basis set does not depend on atomic positions: there are 

no Pulay terms in the forces
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The cutoff sphere
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Laplacians are easy: Poisson equation
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Other possibilities - many

• Gaussian basis sets (Hartree-Fock codes)
• Real space representations
• LCAO
• LMTO, LAPW
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Brillouin zone integrations

1. Sampling at one point (the best – Baldereschi point, or 
the simplest – Gamma point)

2. Sampling at regular meshes (Monkhorst-Pack grids)
3. For metallic systems, integration of the discontinuity is 

improved introducing a fictitious electronic 
temperature
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Monkhorst-Pack meshes

• Regular, equispaced meshes in the Brillouin 
Zone (generated automatically by PWscf –
“automatic” keyword)

(4,4,4) shifted          (4,4,4) unshifted
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Symmetry

• Symmetry operations: actions that 
transform an object into a new but 
undistinguishable configuration

• Symmetry elements: geometric entities 
(axes, planes, points…) around which we 
carry out the symmetry operations 
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Exploiting symmetry

ρ(r ) = Ψn,

k

r( )
n,

k
∑

2

Ψn,

k S

−1r( ) = Ψn,S

k

r( )

ρ(r ) = Ψn,

k

r( )
n,

k
∑

2
= Ψn,S


kirr

r( )
n,S ,

kirr
∑

2
=

= Ψn,

kirr
S −1r( )

n,S ,

kirr
∑

2
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One symmetry that’s always there

( )rVk
i

!
+÷

ø
ö

ç
è
æ +Ñ

21
2
1

Periodic Hamiltonian for unk (apply H to unk eikr)

( ) ( )ruru knnk
!! *

-=
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K_POINTS { tpiba | automatic | crystal | gamma 

gamma : use k = 0 ( do not read anything after this card )
Note that a set of subroutines optimized for calculations at 
the gamma point are used so that both memory and cpu requirements
are reduced

automatic: automatically generated uniform grid of k-points
next card:

nk1, nk2, nk3, k1, k2, k3
generates ( nk1, nk2, nk3 ) mesh with ( k1, k2, k3 ) offset
nk1, nk2, nk3 as in Monkhorst-Pack grids
k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced 
by half a grid step in the corresponding direction )
The mesh with offset may not work with tetrahedra.

crystal : read k-points in crystal coordinates

K-points in PWSCF
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tpiba : read k-points in 2pi/a units ( default )
next card:

nks
number of supplied special points

xk_x, xk_y, xk_z,  wk
special points in the irreducible Brillouin Zone
of the lattice (with all symmetries) and weights
If the symmetry is lower than the full symmetry 
of the lattice, additional points with appropriate
weights are generate
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Pseudopotentials (I)

From Eckhard Pehlke lecture notes – Fritz-Haber Institut
http://www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/pehlke1.pdf
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Pseudopotentials (II)
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Norm-conserving pseudopotentials

• Real and pseudo valence eigenvalues agree for a 
chosen atomic configuration

• Real and pseudo wavefunctions agree beyond a core 
radius

• The integral of real and pseudo charge from 0 to a 
distance greater than core radius agree

• The logarithmic derivatives of the real and pseudo 
wavefunctions, and their first energy derivatives, 
agree for distances greater than the core radius
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Non-local, norm conserving

Different angular 
momenta scatter 
differently from the core 
(states that have shell 
below them with same 
angular momentum are 
repelled more

Non-local PP
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Logarithmic derivatives

( )ln ,l
d u E r
dr
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Note on ultrasoft pseudopotentials
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Temperature and smearing

ρ(r ) = fn, k Ψn,

k

r( )
n,

k
∑

2
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Temperature and smearing
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Figure 7: Force convergence for Config. 2 with respect to cold smearing and k-points.
Ecut-wfc=90 Ry. Other details as in Tab. 1

kfcc-mesh FCC (Å
�1

) BCC (Å
�1

) kbcc-mesh

6 0.0827 0.0882 4

11 0.0451 0.0441 8

22 0.0225 0.0220 16

28 0.0177 0.0176 20

34 0.0146 0.0147 24

51 0.0097 0.0098 36

Table 2: Comparison of the linear density (and k-mesh) of k-points for the 2 ferromag-

netic structures BCC and FCC.

�E = E0
vac � n � 1

n
Ebulk (1)

5
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Generalized smearing/entropic formulations
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Generalized smearing/entropic formulations



Summary

• Bravais lattice
• Atoms in the basis
• Cutoff energy for the wavefunctions (and 

for the charge density – 4x-12x)
• K-point sampling
• Metal: fictitious temperature (smearing)
• Self-consistency recipe 
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Materials Cloud Work tools
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QE input generator SeeK-path



Iterations to selfconsistency

• Construct the external potential (array of non-local 
pseudopotentials)

• Choose the plane-wave basis set cutoff, k-point sampling

• Pick a trial electronic density

• Construct the Hamiltonian operator: Hartree and exchange-
correlation

• Solve Kohn-Sham equations for the given Hamiltonian (e.g. 
by diagonalization)

• Calculate the new charge density

• Iterate
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Let’s go variatonal: kinetic energy

Ekin =
1
2

c G
n 2
G2


G
∑

n
∑

G − 1
2
∇2 ′G = drexp(−iGr) − 1

2
∇2⎡

⎣⎢
⎤
⎦⎥
exp(i ′G r) = 1

2
G2δG, ′G∫

21
2kin n n

n
E y y= - Ñå  

ψ n (
r ) = c G

n

G
∑ exp(i


G ⋅ r )
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Etot =
1
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Potential energy (non-SCF)
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Total energy (non-SCF)

21
2n n nn

n
E Ve y y= = - Ñ +å å

E = 1
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Dynamical evolution of c’s 

Etot =
1
2

c G
n 2
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We need the force

}][{ iEE y=
i

i
i

EF
dy
yd }][{

-=
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Skiing down a valley

µ ψ i = Fi (= −Hψ )i

ψ i = Fi (= −Hψ i )
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SD or CG 
skiing
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Born-Oppenheimer Molecular Dynamics

mi
Ri =

Fi = Ψ − dV̂

d

Ri

Ψ
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Lots of Skiing if Atoms Move
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Lots of Skiing if Atoms Move
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The extended Car-Parrinello
Lagrangian
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Constant(s) of motion

Econs =
1
2
µi ψ i

ψ i
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∑ + 1

2
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Constant of Motion

+
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Born-Oppenheimer vs Car-Parrinello
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What about metals?
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