FIRESIDE CHATS FOR LOCKDOWN TIMES
Density-functional practice (Part 2)




OUTLINE

e What is density-functional theory? (Part 1)

e What does it take to perform these
calculations? (Part Il)

e Why is it relevant for science and
technology? (Part IIl)

e What can it do? and cannot do? (Part Ill)

(to keep in touch, info in the Learn section of the
Materials Cloud website, and https://bit.ly/3eqighg)
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Kohn-Sham energy functional

e Kohn-Sham mapping into non-interacting electrons
allows to define a non-interacting kinetic energy T

e Unknown functional: known T, + known Hartree +
unknown E,_

|
B} = 3 —5 [ 410V %i(e) dv + Baln(x) +

3=1

4B, [n(r)] + / Veae () (x) dr
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The Kohn-Sham equations

e Euler-Lagrange equations (i.e. Kohn-Sham)

_%Vz + v (r) + Vae(r) + l’emt(r)] i(r) = Hys ¥i(r) = & ¥;(r)

n(r’ 6E;1:c

r—r]

N
n(r) = ) [di(x)*

=1

e LDA for the last unknown piece
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XC hole in a model insulator

/na‘rchA(r,r' —r) = /nmc(r,r' —r)dr' = —1,

MC hole density: 0.08614  LDA hole

Courtesy of RJ
0.0025 Needs 2001
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MC hole density: 0.08614  LDA hole
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Spherical average saves LDA!

O ol
001 p 001
0021 0mk

003 F
004 F

003 F
-0.04 F

FIG. 3. (a) The Monte Carlo exchange-correlation hole with the fixed electron set at the charge density maximum (0,1.36), marked by a
star, and the ion set at the origin, marked by a cross. All quantities are in atomic units. (b) The same quantity spherically averaged. Each
contour line represents a change of 0.005 starting at —0.035 and going to —0.005. Each graph shows one plane in position space.

W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001)
A. Puzder, M. Y. Chou, and R. Q. Hood, Phys. Rev. A 64, 022501 (2001)
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LDA across materials space

Material Expt Theory Delta Type

LaBi 6.57 6.643 1.2%  alloy
CakFo 5.4626 5.496 0.6%  halide
Ag 4086  4.112 0.6%  metal
V 3.028 3.019 -0.3% metal
ZrN 4.62 4.634 0.3%  misc

NbO 42103 4.2344 0.6%  oxide
GaAs 5.653 5.663 0.2%  semiconductor
CoSis 5.36 5:3 -1.1% silicide

C. J. Pickard 2002
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Well, not always...

VOLUME 76, NUMBER 4

PHYSICAL REVIEW LETTERS

22 JANUARY 1996

Generalized Gradient Theory for Silica Phase Transitions

D.R. Hamann

(Received 16 October 1995)

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

Density functional theory based on the generalized gradient approximation to the exchange and
correlation energy is shown to correct a qualitative error of the local density approximation in describing
a high-pressure phase transition of SiO,. Advantages of an adaptive curvilinear coordinate method for
such generalized gradient calculations are discussed.

20f 1

Energy / SiO, (eV)
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LI B B B TABLE I. Structural and elastic properties of a-quartz.

Parameter Experiment GGA LDA
a (A) 4.92° 497 4.84

c (A) 541° 552 541

Si-0(1) (A) 1.6052 1.622 1611

Si-0(2) (A) 1.614% 1.625 1.617

Si-0-Si (deg) 143.7° 1455 1402
By (GPa) 382 48 45
B} 6" 30 49

“Reference [25].

20
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Volume / Si0, (A%

FIG. 3. Energy vs volume for GGA and LDA showing
calculated points and fits by the Murnaghan equation of

state [22].
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Summary on xc

e LDA (local density approximation)

e GGA (generalized gradient approximation):
BP88, PW91, PBEsol, BLYP, ...

e WDA (weighted density approximation —
good, not much used)

e Meta-GGA: Laplacian (TPSS, SCAN)

e Hybrids (B3LYP, PBEOPBE, HSE): part of
Fock exchange
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Back to the one-electron problem

e How do we solve the set of one-particle
differential equations that come from
Hartree, Hartree-Fock, or density-
functional theory ?

{—%W + 3.,V (R, ~7)+Mean Ficld Tenn}m:sqo(f)
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Expansion in a basis

v(i)=Y co,(7)

n=1.k

0.6
0.3
-0.
0 -0.2
-8 -4 0 4 8
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Differential eqgs. as a linear algebra problem

N

Hly)=E|y)
V)= lekcn ) {|®,)} orthogonal
(9. [H|w)=E(p,|w)
> c.(e.|H]0,)=Ec,



Differential eqgs. as a linear algebra problem

Z H c =Ec,

n=1.k
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Differential eqgs. as a linear algebra problem

H —-FE ... H

11 1k

det
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Variational principle as a non-linear minimization

Elly =X [vi )V, () i+ E, )]+

i=1

+E, [n(A)]+ [V, (F)n(F) dr

EI:{I//i}:IZ Z C;ﬁon ’7 E(CI’C2’”"CI<)

| n=1,k
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What choice for a basis ?

e For molecules: often atomic orbitals, or
localized functions as Gaussians

e For solids, periodic functions such as sines
and cosines (plane waves)
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Bravais lattices

e |nfinite array of points with an arrangement and orientation that
appears exactly the same regardless of the point from which the

array is viewed.

R=la +ma,+na, 1mandn integers

—

a,, a, and a, primitive lattice vectors

e 14 Bravais lattices exist in 3 dimensions (1848)
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7 Crystal classes

4 Lattice types
LYP

~

1 4 Bravais Parameters Volume Base Face
lattice centered (I) | centered (C) | centered (F)
ay # ay # as
Triclinic Q12 # g3 # Qg
ay # az ;é as
a3 = a3y = 90°
Monoclinic a9 # 90°
ay # ay # az
Orthorhombic 12 = oz = a3 = 90°
ay = ay 75 as
Tetragonal gy = Qg3 = gy = 90°
ay = dg = d3
Trigonal a2 = (o3 = aay < 120°
ay = dg = dj3
(_fubic 12 = (3 = (¥31 = 900
ay =a; #az
12 = 1200
Hexagonal o3 = azy = 90°
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Reciprocal lattice (1)

e Let’ s start with a Bravais lattice, defined in
terms of its primitive lattice vectors...

—

R = laz1 +ma, +na,

[,m,n mteger numbers

—

R:(l,m,n)
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Reciprocal lattice (Il)

e ..and then let’ s take a plane wave

Y (7) = Aexp[i(G - 7)]
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Reciprocal lattice (llI)

e What are the wavevectors for which our
plane wave has the same amplitude at all
lattice points ?

expli(G-7)] = exp[i(G - (F + R))]

exp[i(G-R)]=1 d, ,d, and d, define the

primitive unit cell

expl[i(G - (la, + md, + nd,))] =

G =hb +ib, + jb, with h,i,j integers,
’ a.xa a.xa a,xa
provided s =2z~ > & 37 G o—gp 2

ATy ‘
4 ("2“’3) "1'("2”’3) 4 (“2”’3)
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Bravais lattices in INPUT PW

ibrav is the structure index:

ibrav structure celldm(2)-celldm(6)
1 cubic P (sc) not used
cubic F (fcc) not used

tetragonal P (st) celldm(3)=c/a
14 triclinic P celldm(2)= b/a,

celldm(3)= c/a,
celldm(4)= cos(bc),
celldm(5)= cos(ac),
celldm(6)= cos(ab)

fcc bravais lattice.

al:(a/z)(-lloll)l az:(a/z)(ollll)l a3:(a/2)(-11110)'
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Bloch theorem

(H,Tr] = 0 = Uu(r) = unk(r)e™”

e n, k are the qguantum numbers (band index n and
crystal momentum k)

e yis periodic (same periodicity as Hamiltonian)
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Bands and Bloch theorem

Bloch wavefunction

A Enk

LIJnk (X)

7

0eV

-10 eV

M

Ingredient:
> k Atomic
wavefunction

v
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Plane wave expansion

v () :un];(?)exp(i/; - ;7)

periodic u is expanded in planewaves, labeled
according to the reciprocal lattice vectors

u (F)= Y % exp(iG 7)
G
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The plane waves basis set

Systematic improvement of completeness/resolution

Huge number of basis elements — only possible because
of pseudopotentials

Allows for easy evaluation of gradients and Laplacian
Kinetic energy in reciprocal space, potential in real space

Basis set does not depend on atomic positions: there are
no Pulay terms in the forces
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The cutoff sphere
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Laplacians are easy: Poisson equation
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Other possibilities - many

Gaussian basis sets (Hartree-Fock codes)
Real space representations

LCAO

LMTO, LAPW
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Brillouin zone integrations

Sampling at one point (the best — Baldereschi point, or
the simplest — Gamma point)

Sampling at regular meshes (Monkhorst-Pack grids)

For metallic systems, integration of the discontinuity is
improved introducing a fictitious electronic
temperature

Valence bands Copper

J '
N %;k
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Monkhorst-Pack meshes

e Regular, equispaced meshes in the Brillouin
Zone (generated automatically by PWscf —
“automatic” keyword)

(4,4,4) shifted (4,4,4) unshifted
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Symmetry

e Symmetry operations: actions that
transform an object into a new but
undistinguishable configuration

e Symmetry elements: geometric entities
(axes, planes, points...) around which we
carry out the symmetry operations
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Exploiting symmetry

“P

irr
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One symmetry that’s always there

Periodic Hamiltonian for u,, (apply H to u,, e'")

( \?
1 lV+k +V(¥)
2\ )

”nk(?):”:—k(?)
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K-points in PWSCF

K_POINTS { tpiba | automatic | crystal | gamma

gamma : use k = 0 ( do not read anything after this card )
Note that a set of subroutines optimized for calculations at

the gamma point are used so that both memory and cpu requirements
are reduced

automatic: automatically generated uniform grid of k-points
next card:

nkl1, nk2, nk3, k1, k2, k3
generates ( nk1, nk2, nk3 ) mesh with ( k1, k2, k3 ) offset
nk1, nk2, nk3 as in Monkhorst-Pack grids
k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced

by half a grid step in the corresponding direction )
The mesh with offset may not work with tetrahedra.

crystal : read k-points in crystal coordinates
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K-points in PWSCF

tpiba :read k-points in 2pi/a units ( default)

next card:

nks
number of supplied special points

xk_x, xk_y, xk_z, wk
special points in the irreducible Brillouin Zone
of the lattice (with all symmetries) and weights
If the symmetry is lower than the full symmetry
of the lattice, additional points with appropriate

weights are generate
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Pseudopotentials (I)

occupation, eigenvalue

3 1 -27¢V | 2D 1 2.7V
3§ = 2 .78e¢V (VAIENCE 1§ =—— > _78eV
Al — 6 -698¢V pseudo-
Z - 13 2y = 2 108 eV .. core- AI
states Z=3
ls = 2 .1512 eV i
1_, 1 L ‘A
(_Ev ol ’Ueﬂ')wj — €j¢j (—§V2 -+ U$S_))¢;ps_) = €j’l,b;-ps')

From Eckhard Pehlke lecture notes — Fritz-Haber Institut
http://www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/pehlkel.pdf
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Pseudopotentials (Il)

Figure 2.3: A schematic representation of the potentials (red lines) and wave-
functions (blue lines) for an atom. The real potential and wavefunction are
shown with thin lines, while the pseudopotential and wavefunction are shown in
thick lines. Qutside the cutoff region (vertical black lines) the two are identical.
Picture couriesy af Chris Goringe.
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Norm-conserving pseudopotentials

Real and pseudo valence eigenvalues agree for a
chosen atomic configuration

Real and pseudo wavefunctions agree beyond a core
radius

The integral of real and pseudo charge from O to a
distance greater than core radius agree

The logarithmic derivatives of the real and pseudo
wavefunctions, and their first energy derivatives,
agree for distances greater than the core radius
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Non-local, norm conserving

Different angular
momenta scatter
differently from the core
(states that have shell
below them with same
angular momentum are

repelled more

Non-local PP

Ryd

Va e ¢(r)
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dr

(E.r)

Logarithmic derivatives

Logarithmic derivatives

_ — Allzlction _ — All2lection
S State — Sami-kxcal p State — Sami-kbcal
Fully separable —— Fully separable
] ] 1 ] 1
2 -2 —1 1 2

Energy (Hartree)
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Note on ultrasoft pseudopotentials
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Temperature and smearing

Copper

//\.
2}<ﬁ

o(7) = Zkfk H\Pk () S—qa

A [0 ; {7[’?:}3 {fz}] - Zfz' (1/’z'|Te T VnzW’i) i Ech[n] - US[{fz‘}] |
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Temperature and smearing

« + 388
161616 |-
202020
242424
363636 |

0.615F

0.000 0.005 0.010 0.015 0.020
smearing (Ry)
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Generalized smearing/entropic formulations
Alos{od AfY] = D0 £ QlTe 4 Valths) + Braeeln] = o ST{£}]
TN =Y f)+ ) fiei((hldi) = 1)

() = 3 Fidi ()

§£=0 = fiHy; = fienh;
2:\1:0 = (Yilhi) =1

Gr =0 = WhlHW) —n =T
2—2:0 - Zﬁ:N
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Generalized smearing/entropic formulations

) 2
dS e —p ds df
- o T i
f(x):/ g(t)dt:>5i:/ —t g(t)dt
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Generalized smearing/entropic formulations

/ g(:c) de =1 normalization

/ooa:g(:c)dw =0 S(0) =0

/ ng(a:) de =0 cold smearing

t
/ (z)dx >0 positive occupancies

- 2 i 2
5(x) = ﬁe [x—(1/v/2)] 2 — V2x)
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Energy (eV)

Generalized smearing/entropic formulations

Total energy

—
— —
/——

Corrected energy

P

Free energy

Cold smearing ]

1 T 1 T 1 T 0.010 i
L Total 0.005 -
- g
Corrected L i
L Q 0.000 y
o
Free @ [
i ~0.005
. 1 . 1 " 1 . —0.010 I
0.00
0.0 1.0 20 3.0 4.0

Smearing (eV)

[ " 1 1 " 1
0.10 0.20 0.30 0.40
Broadening (e¢V)
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Summary

e Bravais lattice
e Atoms in the basis

e Cutoff energy for the wavefunctions (and
for the charge density — 4x-12x)

e K-point sampling
e Metal: fictitious temperature (smearing)
e Self-consistency recipe
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Materials Cloud Work tools

QE input generator

Quantum ESPRESSO input generator and structure visualizer
About the Q: m ESPRESSO input g or and ture visualizer

Instructions

Acknowledgements

Upload your structure

Upload a crystal structure: Browse... No file selected.

Select here the file format: native PWscf [parser: getools]
Select here the pseudopotential library: SSSP Efficiency PBE (version 1.1)

Select here the magnetism/smearing:!”!

Select here the k-points distance (1/A)
(and smearing (eV) in case of fractional occupations):

non-magnetic metal (fractional occupations)
fine (0.20 1/A, 0.2 eV)

By continuing, you agree with the terms of use of this service.

Generate the PWscf input file

Otherwise, pick an example

Select here a structure: Al

Select here the pseudopotential library: SSSP Efficiency PBE (version 1.1)

Select here the magnetism/smearing:” non-magnetic metal (fractional occupations)
Select here the k-points distance (1/A) fine (0.20 1/A, 0.2 V)

(and smearing (eV) in case of fractional occupations):

By continuing, you agree with the terms of use of this service,

Generate the PWscf input file

SeeK-path

SeeK-path: the k-path finder and visualizer

What SeeK-path does

SeeK-path definitions and advantages

Upload your structure

Upload a crystal structure: Browse... No file selected.
Select here the file format: Quantum ESPRESSO input [parser: ge-tools]
By continuing, you agree with the terms of use of this service.

Calculate my structure

Otherwise, pick an example

Select here an extended Bravais Symbol: aP?2 [with inversion] B
A simple explanation of the extended Bravais symbols.

Calculate this example

How to cite
If you use this tool, please cite the following work:

o Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, |. Tanaka, Band structure diagram paths based on crystallography, Comp. Mat. Sci.
128, 140 (2017). DOI: 10.1016/j.commatsci.2016.10.015 (the "HPKOT" paper; arXiv version: arXiv:1602.06402).

* You should also cite Spglib that is an essential library used in the implementation: A. Togo, |. Tanaka, *Spglib: a software library
for crystal symmetry search®, arXiv:1808.01590 (2018)

* The input parsers use a number of libraries (see name in the dropdown list) from ASE, qe-tools or pymatgen.

Note: if you want to use the code on your computer, you can download the SeeK-path python library from the SeeK-path GitHub
repository.
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Iterations to selfconsistency

e Construct the external potential (array of non-local
pseudopotentials)

e Choose the plane-wave basis set cutoff, k-point sampling
e Pick a trial electronic density

e Construct the Hamiltonian operator: Hartree and exchange-
correlation

e Solve Kohn-Sham equations for the given Hamiltonian (e.g.
by diagonalization)

e Calculate the new charge density

¢ [terate
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positions of ions

Construct Viss given atomic numbers ondl

.

Pick a cutoff for the plane-wave basis set {e “!*9’1}]

. ¥
[ Pick a trial density n(r) ]

Calculate V4 (n) and ch (n) ]

S TR

Solve HY = [—
by diagonalization of Hy+6, k+6’

202 K
hzx +Vion+ VH +ch] =&y

Y

Calculote new n(r) |

R

(1S SOLUTION SELF-CONSISTENT 2 )

+ YES NO

>

Generate New
Density n (r)

S———

Compute Total Energy ]
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Let’s go variatonal: kinetic energy

Ly, = Z<Wn

n

_, e
——V ‘Wn> l//n(r)—;cé exp(iG-r)

2

G’> = jdr exp(—iGr){—lV2 }exp(z’G’r) = %G25G,G,

2
|
Ekin = 25;
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Potential energy (non-SCF)

E. =>(v,

n

V(?)‘t//n> wn(?)=zélcg exp(i G -7

(G|V(r)|G") = j dr exp(—=iGr)V(r)exp(iG’r) = V(G - G’)

n
||€G

2 — —
G+ il V(G- G')]
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E=.,6=210,

Total energy (non-SCF)

B

\2

)

+Zc” C”V(G G’)

\

J



Dynamical evolution of c’s

E({c})

{cl, {c}

FIG. 9. Schematic representation of the damping of wave-
function coefficients {¢| and the evolution of the Kohn-Sham

energy functional E [ {c]] to its ground-state value E.
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E,=2| 32 6+ X et G-6)
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We need the force

r_ Okl

E=E[{y,}] ==

l



Skiing down a valley

uy, = F(=-Hy),

E({c})

y.=F(=-Hy)

l

FIG. 9. Schematic representation of the damping of wave-
function coefficients {¢| and the evolution of the Kohn-Sham

energy functional E[{c}] to its ground-state value E,.
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SD or CG STEEPEST DESCENTS
skiing @

CONJUGATE GRADIENT

&

FIG. 14. Schematic illustration of two methods of convergence
to the center of an anisotropic harmonic potential. Top:
steepest-descents method requires many steps to converge. Bot-
tom: Conjugate-gradients method allows convergence in two
steps.
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Born-Oppenheimer Molecular Dynamics

SR dV
mK; = 1, :<‘P‘ IR ‘\P>
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Lots of Skiing if Atoms Move
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Lots of Skiing if Atoms Move
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The extended Car-Parrinello
Lagrangian

3 L a0 o 785 1 |
Lcp = 311'[1 R-} AR E o Hi <'1,£’-3 ¢’,1>— (\lf..|7'l.-.|\l!u) +  constraints
e—  ce—

I i SRS——— i — . ezt hsn

potential energy  Orthonormality

kinetic energv

d 0L oL
dt oR; OR;
d oL 0L
dt gy oV}
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Constant(s) of motion

E = Z%M <l/7i )+ ;%M,Rf +(W,|H,|¥,)
1. .
Fp= S 0 2=, T

4 :<\P0‘ﬁe‘?0>

] -
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Constant of Motion

\—[—/
= - potential energy

Y

kinetic energyv

Lo L7
D SMIRT Y s (Y (¢ + (Wo|He|Wo)
F i
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Born-Oppenheimer vs Car-Parrinello

ORBITAL IS STATIONARY

KON BEGINS TO MOVE

ORBITAL VELOCITY LESS
THAN ION VELOCITY

ORBITAL
VELOCITY EQUAL
TO ION VELOCITY

FIG. 24. Schematic illustration of how an orbital will eventual-
ly lag behind a moving ion during a simulation with
py=—[H —A]u, as discussed in the text. Convention the same
as in Fig. 23.

ORBITAL IS STATIONARY

ION BEGINS TO MOVE

ORBITAL ACCELERATED

ORBITAL IN
INSTANTANEOQOUS
GROUND STATE

ORBITAL DECELERATED

FIG. 23. Schematic illustration of how an orbital will oscillate
around a moving ion during a simulation with
puh=—[H —A]{, as discussed in the text. Velocities and ac-
celerations are designed as open and filled arrows, respectively.
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What about metals?

AlT; i} A fijt]
= D FilWilT + Veulth) + Enxcln] — TS[{ i}

n(r) = Zf i ¥ (r)g;(r)



What about metals?

GIT: {gi}]) = min AT {ui}.{ £,
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